稀疏列是对 Null 值采用优化的存储方式的普通列。稀疏列减少了 Null 值的空间需求,但代价是检索非 Null 值的开销增加。当至少能够节省 20% 到 40% 的空间时,才应考虑使用稀疏列。

当您连接到 SQL Server 2008 或更高版本的服务器时,SQL Server JDBC Driver 3.0 支持稀疏列。可以使用 SQLServerDatabaseMetaData.getColumnsSQLServerDatabaseMetaData.getFunctionColumnsSQLServerDatabaseMetaData.getProcedureColumns 确定哪个列是稀疏列以及哪个列是列集列。

列集是返回非类型化 XML 形式的所有稀疏列的计算列。当表中有很多列、大于 1024 或分别对这些稀疏列进行操作很烦琐时,应考虑使用列集。列集最多可以包含 30,000 个列。

示例

说明

此示例说明如何检测列集。它还显示如何分析列集的 XML 输出,以便从稀疏列获取数据。

所列的第一个代码部分是您应该对服务器运行的 Transact-SQL。

所列的第二个代码部分是 Java 源代码。在编译应用程序之前,应更改连接字符串中服务器的名称。

代码

use AdventureWorks
CREATE TABLE ColdCalling
(
ID int IDENTITY(1,1) PRIMARY KEY,
[Date] date,
[Time] time,
PositiveFirstName nvarchar(50) SPARSE,
PositiveLastName nvarchar(50) SPARSE,
SpecialPurposeColumns XML COLUMN_SET FOR ALL_SPARSE_COLUMNS
);
GO

INSERT ColdCalling ([Date], [Time])
VALUES ('10-13-09','07:05:24')
GO
      
INSERT ColdCalling ([Date], [Time], PositiveFirstName, PositiveLastName)
VALUES ('07-20-09','05:00:24', 'AA', 'B')
GO
      
INSERT ColdCalling ([Date], [Time], PositiveFirstName, PositiveLastName)
VALUES ('07-20-09','05:15:00', 'CC', 'DD')
GO

代码

import java.sql.*;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.xml.sax.InputSource;

import java.io.StringReader;

import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

public class SparseColumns {

   public static void main(String args[]) {
      final String connectionUrl = "jdbc:sqlserver://my_server;databaseName=AdventureWorks;integratedSecurity=true;";
      
      Connection conn = null;
      Statement stmt = null;
      ResultSet rs = null;
      
      try {
         conn = DriverManager.getConnection(connectionUrl);
         
         stmt = conn.createStatement();
         // Determine the column set column
         String columnSetColName = null;
         String strCmd = "SELECT name FROM sys.columns WHERE object_id=(SELECT OBJECT_ID('ColdCalling')) AND is_column_set = 1";
         rs = stmt.executeQuery(strCmd);
         
         if (rs.next()) {
            columnSetColName = rs.getString(1);
            System.out.println(columnSetColName + " is the column set column!");
         }
         rs.close();

         rs = null; 
             
         strCmd = "SELECT * FROM ColdCalling";
         rs = stmt.executeQuery(strCmd);
            
         // Iterate through the result set
         ResultSetMetaData rsmd = rs.getMetaData();
         
         DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
         DocumentBuilder db = dbf.newDocumentBuilder();
         InputSource is = new InputSource();
         while (rs.next()) {
            // Iterate through the columns
            for (int i = 1; i <= rsmd.getColumnCount(); ++i) {
               String name = rsmd.getColumnName(i);
               String value = rs.getString(i);
   
               // If this is the column set column
               if (name.equalsIgnoreCase(columnSetColName)) {
                  System.out.println(name);
                  
                  // Instead of printing the raw XML, parse it
                  if (value != null) {
                     // Add artificial root node "sparse" to ensure XML is well formed
                     String xml = "<sparse>" + value + "</sparse>";
   
                     is.setCharacterStream(new StringReader(xml));
                     Document doc = db.parse(is);
   
                     // Extract the NodeList from the artificial root node that was added
                     NodeList list = doc.getChildNodes();
                     // This is the <sparse> node
                     Node root = list.item(0); 
                     // These are the xml column nodes
                     NodeList sparseColumnList = root.getChildNodes(); 
   
                     // Iterate through the XML document
                     for (int n = 0; n < sparseColumnList.getLength(); ++n) {
                        Node sparseColumnNode = sparseColumnList.item(n);
                        String columnName = sparseColumnNode.getNodeName();
                        // Note that the column value is not in the sparseColumNode, it is the value of the first child of it
                        Node sparseColumnValueNode = sparseColumnNode.getFirstChild();
                        String columnValue = sparseColumnValueNode.getNodeValue();
                        
                        System.out.println("\t" + columnName + "\t: " + columnValue);
                     }
                  }
               } else {   // Just print the name + value of non-sparse columns
                  System.out.println(name + "\t: " + value);
               }
            }
            System.out.println();//New line between rows
         }
      } catch (Exception e) {
         e.printStackTrace();
      } finally {
         if (rs != null) {
            try {
               rs.close();
            } catch (Exception e) {
               e.printStackTrace();
            }
         }
         if (stmt != null) {
            try {
               stmt.close();
            } catch (Exception e) {
               e.printStackTrace();
            }
         }
         if (conn != null) {
            try {
               conn.close();
            } catch (Exception e) {
               e.printStackTrace();
            }
         }
      }
   }      
}

请参阅

借助 JDBC 驱动程序提高性能和可靠性